Donnerstag, 29. Januar 2015

Chlorine dioxide and chlorine effectiveness to prevent Escherichia coli O157:H7 and Salmonella cross-contamination on fresh-cut Red Chard

http://ucanr.edu/datastoreFiles/234-2461.pdf

Chlorine dioxide and chlorine effectiveness to prevent Escherichia coli O157:H7 and Salmonella cross-contamination on fresh-cut Red Chard 


Alejandro Tomás-Callejas a , Francisco López-Gálvez b , Adrian Sbodio c , Francisco Artés a , Francisco Artés-Hernández a , Trevor V. Suslow c,* a Postharvest and Refrigeration Group, Department of Food Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, Cartagena, Murcia 30203, Spain b Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, Espinardo, Murcia 30100, Spain cDepartment of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA

abstract
Washing procedures applied to fresh produce have the potential to reduce contamination from the surface of the product. However, the wash water may also serve as a source of contamination or has great potential to result in cross-contamination. The objective of this study was to evaluate process handling cross-contamination potential and pathogen removal of initially low numbers of attached cells of Salmonella and Escherichia coli O157:H7 during the washing-disinfection, rinsing, and de-watering steps of fresh-cut Red Chard baby leaves as affected by NaClO and ClO2. The efficacy and stability of liquid ClO2 applied to the water as the disinfectant treatment was also evaluated. Non-inoculated leaves were mixed with inoculated leaves (about 3e5% of total weight) and processed as a unit. After processing, no confirmed colonies on selective media were recovered from the non-inoculated leaves and qPCR was used for detection below the limit of quantitative recovery. ClO2 substantially prevented E. coli O157:H7 cross-contamination but was not effective for the inoculated Salmonella. Large populations of Salmonella were recovered from centrifugation discharge effluent water whereas no colonies were detected from water in contact with inoculated leaves collected from preceding washing unit operations. At an industrial level, this represents a potential risk of cross-contamination to product and equipment at the step immediately prior to packaging. These results suggest that the centrifugation effluent water could be used as a potential sample point to evaluate lot contamination and cross-contamination in the processing chain, even at low levels of pathogens, as were used in this study, undetectable by conventional sampling methods

Mittwoch, 28. Januar 2015

Treatment with chlorine dioxide extends the vase life of selected cut flowers

The way is open! Make your own tests with TwinOxide-0,3%-Solutions!
All The Best!






http://www.sciencedirect.com/science/article/pii/S092552140800135X

Treatment with chlorine dioxide extends the vase life of selected cut flowers


Abstract

The accumulation of bacteria in vase water is often associated with premature senescence in many cut flower species. In the present study, we tested the efficacy of aqueous chlorine dioxide (ClO2) to extend flower display life by preventing the build-up of bacteria in vase solutions. The addition of 2 or 10 μL L−1ClO2 to clean deionized water extended the vase life of Alstroemeria peruviana ‘Senna’, Antirrhinum majus‘Potomic Pink’, Dianthus caryophyllus ‘Pasha’, Gerbera jamesonii ‘Monarch’, Gypsophila paniculata‘Crystal’ and ‘Perfecta’, Lilium asiaticum ‘Vermeer’, Matthiola incana ‘Ruby Red’ and Rosa hybrida‘Charlotte’ flowers by 0.9–13.4 d (7–77%) relative to control (i.e. 0 μL L−1 ClO2) stems. The beneficial effects of ClO2 treatment were associated with a reduction in the accumulation of aerobic bacteria in vase water and on cut surfaces of flower stems. ClO2 treatment was also effective in maintaining or extending the vase life of A. majus ‘Potomic Pink’, Dendrathema × grandiflorum ‘Albatron’, G. paniculata ‘Perfecta’ and M. incana ‘Ruby Red’ flowers even when stems were placed into water containing 1011 CFU L−1bacteria. The efficacy of 10 μL L−1 ClO2 in vase water containing 0.2 g L−1 citric acid and 10 g L−1 sucrose to extend the display life of G. jamesonii ‘Lorca’ and ‘Vilassar’ flowers was equal to or greater than other tested biocides (i.e. aluminum sulfate, dichloroisocyanuric acid, 8-hydroxyquinoline sulfate, Physan 20™, sodium hypochlorite). Taken collectively, the results of the present study highlight the potential of aqueous ClO2 for use as an alternative antibacterial agent in flower vase solutions.

gerbera daisies effective indoor air purifiers



Anmerkung:


Testergebnisse- Tabelle

Test der Chlordioxidanwendung im Gartenbau

Wirksame Konzentrationen



Chlordioxidkonzentration
Bakterien
< 0,5 ppm
Vegetative Pilzsporen
< 1 ppm
Nematoden
Ø 3 ppm; lange Einwirkzeiten


Quelle:

http://chlorine-dioxide-for-horticulture.blogspot.de/2015/01/wasserdesinfektion-in-geschlossenen.html


Effects of aqueous chlorine dioxide treatment on browning of fresh-cut lotus root



In dem Artikel wird gezeigt, dass es möglich ist, Lotus-Wurzeln mit Chlordioxidwasser zu behandeln, um die Bräunung zu minimieren oder zu verhindern.
Die Ergebnisse sind vielversprechend.
Es ist nicht ganz klar, ob hier Stabilisierte Chlordioxidlösungen oder  Chlordioxidlösungen benutzt werden. Solte es sich um Stabilisiertes Chlordioxid handeln, das als Chlordioxid bezeichnet wird, dann  können  die Konzentrationen der Chlordioxid-Lösungen um den Faktor 50 bis 85 verringert werden.
Für derartige Versuche eignen sich die Produkte von TwinOxide Int. BV ( www.twinoxide.com)


Dr.-Ing.Wolfgang Storch


http://www.sciencedirect.com/science/article/pii/S0023643808002016

Effects of aqueous chlorine dioxide treatment on browning of fresh-cut lotus root

Abstract

Effect of aqueous chlorine dioxide (ClO2) treatment on browning of fresh-cut lotus root (FLR) was investigated to explore the feasibility to apply ClO2 for browning inhibition of fresh-cut products. Cut lotus roots were treated in ClO2 solutions at different concentrations (10, 50 and 100 mg/l) for different time (5, 10 and 15 min), followed by chilled storage for 8–10 days at 4 °C. Color parameters (La and b), polyphenol oxidase (PPO) activity and overall visual quality (OVQ) were measured at one-day interval during storage. Results showed that higher ClO2 concentration and longer treatment time can provide better inhibitory effects on the browning of FLR. ClO2 concentration, treatment time and storage time were three significant factors (P < 0.05) and some significant interactions were observed. PPO activities were largely inhibited by 100 mg/l ClO2 treatment for 10 min. The 100 mg/l ClO2 treatment maintained high OVQ scores during 10-day storage; while 50 mg/l ClO2 treatment was acceptable for maintaining OVQ during 4-day storage. ClO2 treatment was demonstrated to be a promising alternative approach to control browning and improve OVQ of FLR.

http://www.nutrition-and-you.com/lotus-root.html

Lotus root nutrition facts

Crunchy, delicate flavored, lotus root is an edible rhizome (root) of lotus plant. Since ancient times, lotus plant has been held in high esteem in the oriental regions, especially in Chinese and Japanese cultures. Almost all the parts of the plant: root, young flower stalks, and seeds are being employed in the cuisine.
Lotus is an herbaceous, perennial aquatic plant belonging to Nelumbonaceae family. Scientific name:Nelumbo nucifera. The root is popular as renkon in the Japan.

lotus root


Lotus root is grown as annual root vegetable crop in customized ponds. Although lotus can be raised from seeds, commercially, its rhizomes with meristems (growing points) are preferred for implantation since it take overall less time for crop production. Rhizome formation in the plant usually coincides with the appearance of large floating leaves on the surface of water about 5-6 months after its plantation.
The rhizomes grow in the swampy underwater environments. They are actually modified tubers, storing energy in the form of starch. The rhizome develops into sausage-like three to five jointed nodes of about 2-4 feet length. Each rhizome segment features smooth, grey-white color and measures about 10-20 cm in length, 6-10 cm in diameter. Internally, the root has white, crunchy flesh with mild sweet, water chestnut like flavor. Its cut sections reveal visually appealing display of symmetrically arranged air canals (holes) traversing along the length of the root.
The lotus fruit is an enlarged receptacle akin to sunflower head wherein numerous edible seeds embedded in its head.

Health benefits of Lotus root

  • Lotus root is one of the moderate calorie root vegetables. 100 g root-stem provides about 74 calories. Nevertheless, it composed of several health benefiting phyto-nutrients, minerals, and vitamins.
  • Lotus rhizome is very good source dietary fiber; 100 g flesh provides 4.9 g or 13% of daily-requirement of fiber. The fiber, together with slow digesting complex carbohydrates in the root help reduce blood cholesterol, sugar, body weight and constipation conditions.
  • Lotus root is one of the excellent sources of vitamin C. 100 g root provides 44 mg or 73% of daily-recommended values. Vitamin C is a powerful water soluble anti-oxidant. It is required for the collagen synthesis inside the human body. Collagen is the main structural protein inside the body, required for maintaining integrity of blood vessels, skin, organs, and bones. Regular consumption of foods rich in vitamin C helps the body protect from scurvy, develop resistance against viral infections, boosting of immunity, wound healing and to scavenge cancer causing harmful free radicals from the body.
  • In addition, the root contains moderate levels of some of valuable B-complex group of vitamins such aspyridoxine (vitamin B-6), folates, niacin, riboflavin, pantothenic acid, and thiamin. Pyridoxine (vitamin B-6) acts as a coenzyme in the neuro-chemical synthesis in the brain which influences mood. Adequate pyridoxine levels help control nervous irritability, headache, and tension. It also cuts heart-attack risk by controlling harmful homocysteine levels in the blood.
  • Further, the root provides healthy amounts of some important minerals like copperiron, zinc, magnesium, and manganese. Copper is a cofactor for many vital enzymes, including cytochrome c-oxidase and superoxide dismutase (other minerals function as cofactors for this enzyme are manganese and zinc). Along with iron, it is also required in the production of red blood cells.
  • Crunchy, neutral yet delicate flavor of root lotus is because of its optimum electrolyte balance. It composes agreeable ratio of sodium to potassium at the value 1:4. While sodium gives sweet taste to the root, potassium acts to counter negative effects of sodium by regulating heart rate and blood pressure.

Lotus root

The peel is reddish Brown. The interior has many holes and is white. The texture is slightly crunchy, and mildly sweet.

Preparation
Preparation of the lotus root involves removing the peeling to reveal the white interior. Often, the root can be sliced or cut into sections for use in different types of recipes. When eaten raw, sections of lotus root can be used with dips or eaten alone, much in the same manner as celery or carrot sticks.
Consumption
Lotus root can be used raw or cooked. It is commonly consumed as a snack or filled. The lotus root also works well in salads, soups, stews, and as a steamed side dish.
When to eat
Select a lotus root that has a firm texture, appears to be plump and juicy, and does not have soft spots. The older the root, the darker it is. Lotus root should be kept in the refrigerator and prepared within a week of purchase.
Did you know?

  • From ancient times the lotus has been a divine symbol in Asian traditions representing sexual purity, a virtue.
  • In Buddhist iconography, Buddha is often represented on a pink lotus. In Buddhist symbolism, the lotus represents purity of the body, speech, and mind.

Dienstag, 27. Januar 2015

Chlordioxid zur Wasserbehandlung im Gartenbau!

http://www.ulmer.de/artikel.dll/GetImage?FID=20611

Chlordioxid zur Wasserbehandlung im Gartenbau! 
Im Artikel wird die Behandlung von Gießwasser mit Chlordioxid beschrieben. Zur Herstellung des Chlordioxidwasser benutzt man ein Generatorsystem.
Ergänzend  dazu möchte ich auf die Anwendung  des TwinOxide-Systems hinweisen,
Hier sehen Sie eine größere Anlage.
Weitere Informationen: http://wirkungvondesinfektionsmitteln.blogspot.de/
/


TwinOxide-Dosing System


In Beiträge zur Betriebssicherheit im Gartenbau:

https://www.gevau.de/fileadmin/user_upload/Beitrag_zur_Betriebssicherheit_Nr.27.pdf

Die Anmerkungen zum Chlordioxid in Tabelle 3 ( Nachteile)  sind  auf die Anwendung der Generatorsysteme zu beachten.

Sie treffen jedoch nicht auf das TwinOxide-System zu.



Wasserdesinfektion in geschlossenen Bewässerungssystemen durch Chlordioxid

http://www.fisaonline.de/index.php?lang=dt&act=projects&p_id=5691

Wasserdesinfektion in geschlossenen Bewässerungssystemen durch Chlordioxid

Beschreibung:

Seit mehreren Jahren werden in zahlreichen Gewächshausbetrieben geschlossene Gießwasserkreisläufe eingesetzt (geschlossene Systeme). Diese Systeme haben positive Auswirkungen auf die Umwelt, da sie den Austrag von Nährstoffen und Pflanzenschutzmitteln in die Vorfluter reduzieren. Darüber hinaus führen Sie in den Betrieben zur deutlichen Reduzierung der Wasserkosten. Zur Vermeidung der Verbreitung von wassergetragenen Pathogenen, wird das Gießwasser durch verschiedene Verfahren aufbereitet bzw. desinfiziert. Insbesondere in der wirtschaftlich bedeutenden Produktion von Begonien nimmt der Krankheitsdruck u.a. durch Fusarium sp. in den letzten Jahren stark zu. Ziel des Projektes ist die Einführung und Erprobung der automatisierten Chordioxiddesinfektion des Gießwassers in die Praxis der Gewächshausbetriebe. Das Verfahren ist in der Trinkwasseraufbereitung und in der Reinigung von Mehrweggetränkeflaschen verbreitet. Im Mittelpunkt des Projektes steht die Bewertung der Wirksamkeit, der Dosierung und eventueller Einflüsse auf die Pflanzenverträglichkeit bzw. die Verkaufsqualität der Pflanzen.

Ausführendes Institut:

Gartenbaubetrieb Peter Völker

Adresse

Gartenbaubetrieb Peter Völker 
Waldstr. 1
63533 Mainhausen


Zentrum für Angewandte Biologie - Fachgebiet Phytomedizin

Das Fachgebiet Phytomedizin erforscht Pathogene und tierische Schaderreger an der Rebe und an diversen gartenbaulichen Gewächshaus- und Freilandkulturen. Unser Forschungsfeld deckt dabei ein breites Spektrum verschiedener phytomedizinischer Disziplinen ab, die beispielsweise von der Erarbeitung umweltschonender Pflanzenschutzstrategien für den Wein- und Gartenbau über den Einsatz von molekularen Methoden zur Erforschung von Wirt-Schaderreger-Interaktionen bis hin zur Erarbeitung phytosanitärer Maßnahmen für erdelose Kulturverfahren reichen. In der Lehre vertreten wir das Fach Phytomedizin in den Bachelor- und Masterstudiengängen der Studienrichtungen Weinbau und Oenologie, Gartenbau sowie im europäischen Masterstudiengang EuroMaster Vinifera.

Übergeordnete Institution:

Hochschule Geisenheim Details

Adresse

Zentrum für Angewandte Biologie - Fachgebiet Phytomedizin 
von-Lade-Straße 1
65366 Geisenheim

Pflanzenschutz im Bio-Zierpflanzenbau

https://www.fibl.org/fileadmin/documents/shop/1573-pflanzenschutz-biozierpflanzen.pdf

Pflanzenschutz im Bio-Zierpflanzenbau

Es werden u.a. die Möglichkeiten der Gießwasser-Desinfektion beschrieben.
Die Anwendung von Chlordioxidwasser ist erlaubt, wird jedoch zur Zeit wenig praktiziert.
Dabei sind die Vorschriften der Trinkwasserverordnung  einzuhalten.
TwinOxide-Chlordioxid-Wasser entspricht den Anforderungen nach der DIN EN 12761.